In the above picture, $\triangle \mathrm{ABC}$ is inscribed in the circle. 0 is its orthocentre and AD is the diameter of the circle. DO is produced to meet the other side of the circle at E .

Prove: $B E^{2}+E C^{2}+C D^{2}+D B^{2}=2 D E^{2}$.

Question framed by DR. M. RAJA CLIMAX
Founder Chairman CEOA Group of Institutions

Author's Solution

Given :

$\triangle \mathrm{ABC}$ is inscribed in the circle. O is its orthocentre and AD is the diameter. DO produced meets the circle at E .

To Prove :
$B E^{2}+E C^{2}+C D^{2}+D B^{2}=2 D E^{2}$.

Construction:

Produce AO to meet BC and the circle at F \& G respectively. Produce CO to meet $A B$ at H. Join BO \& DG. Let DE \& BC meet at M.

Solution :

BOCD is a parallelogram.
This can be proved in many ways. Here, the following method is employed.
$\angle H A O=\angle F C O$
[0 is orthocentre. $\mathrm{AF} \perp B C \& C H \perp A B$ and AHFC is concyclic] $\angle B A G=\angle B C G \quad$ [BACG is concyclic]
i.e., $\angle H A O=\angle F C G$
(1) \& (2) \rightarrow
$\angle F C O=\angle F C G$
$\therefore \mathrm{FC}$ is perpendicular bisector of OG .
And OC = CG
AD is diameter
$\therefore \angle \mathrm{AGD}=90^{\circ}$
$\therefore \mathrm{BC} \| \mathrm{DG}$
And BCGD is an isosceles trapezium. (Any trapezium with concyclic vertices is an isosceles trapezium)
$\therefore \mathrm{CG}=\mathrm{BD}$
(3) \& (4) \rightarrow OC $=\mathrm{BD}$
$\mathrm{CH} \| \mathrm{BD}$ [CH is altitude and $\angle A B D$ is right angle]
$\Rightarrow \mathrm{CO} \| \mathrm{BD}$
(5) \& (6) \rightarrow

BOCD is parallelogram.
$\therefore \mathrm{M}$ is the midpoint of BC , the diagonal.
$\Rightarrow \mathrm{EM} \& \mathrm{DM}$ are medians of $\Delta \mathrm{BEC} \& \Delta B D C$ respectively.
\therefore As per Apollonius Theorem,
$B E^{2}+E C^{2}=2\left(E M^{2}+B M^{2}\right)$
And $C D^{2}+D B^{2}=2\left(D M^{2}+B M^{2}\right)$
(7) + (8) \rightarrow
$B E^{2}+E C^{2}+C D^{2}+D B^{2}=2\left(E M^{2}+D M^{2}+2 B M^{2}\right)$ $=2\left[E M^{2}+D M^{2}+2(E M \times D M)\right]$
$=2(E M+D M)^{2}$
$B E^{2}+E C^{2}+C D^{2}+D B^{2}=2 D E^{2}---------------------------$ Proved

